About mljczz

I received a Ph.D. in Biochemistry in 1983 from The Ohio State University. After a sixteen year career researching and developing rapid, ultra-sensitive, quantitative DNA probe assays for the diagnosis and prognosis of deadly diseases, I have been researching and developing meals with optimal nutrition since 2000. Along the way I have also published many other books dealing with nutrition and general philosophical issues. See my Amazon, my Barnes and Noble, or my Smashwords links.

The most important terms are the ones we leave undefined

Neither scientists nor philosophers define important terms adequately.

For example, Aristotle never defined the term “cause” adequately before launching into categorizing all of the different ways the term is used, in a way enshrining all of the intellectual confusions people have with this term. What we needed from Aristotle was criticism of the superficiality of all of this nonsense. A poet making fun of all of this self-important nonsense re Causation would have been more informative. Aristotle’s “four causes” multiplies confusion. There are likely no causes in nature, not four every time we think we have identified one.

Thinkers are sloppy by nature; so this is expected.

But it may also be deliberate – it allows them to claim more for their discoveries, and in some cases get away with it.

“HIV causes AIDS” – millions of research dollars would never have been given to “HIV initiates immunodeficiency in the immunocompetent and it exacerbates immunodeficiency in those already immuno-deficient.” – the latter view of HIV and AIDS being my modest attempt to get at the plain truth.

There is no cause of sickle cell anemia

By definition, the cause of an effect is completely responsible for it. Thus, there cannot be two or more causes. The phrase “a cause” is a contradiction in terms. Removal of the cause of a malady cures ALL people of ALL aspects of the condition.

By definition, the driver of an effect is predominately responsible for it. Thus, there cannot possibly be two drivers of an effect, although when apparent drivers interact, and when each is studied independently, each can appear to be predominately responsible for the effect. In reality, both apparent drivers are contributors. With the exception of interacting “drivers”, the phrase “a driver” is a contradiction in terms. Removal of the driver of a medical condition approaches a cure of the condition.

By definition, a contributor to some effect is partly responsible for it. Removal of a contributor alleviates the condition.

There can be only one cause and only one driver. If there is a driver, there must also be at least one contributor. There can be any number of contributors along with one driver, and there must be two or more contributors when there is no driver and no cause.

Statistics and common sense tell us that in nature there are many more correlates than contributors and many more contributors than drivers, and many more drivers than causes.

The genetic mutation in the Beta globin gene is the driver of sickle cell anemia, not the cause of sickle cell anemia.

The mere existence of a wide range of phenotypes of those who suffer from the disease says that there is more to this disease than this genetic mutation, this driver, this common denominator, this defining characteristic, this challenge, the mutation being the challenging problem that sets up a whole lot of other problems.

The fact that there are mild cases of sickle cell anemia says either that the genetic lesion itself -the driver- is not so bad as imagined or that other things can ameliorate the condition.

If those suffering the worst cases of the disease were cured of the driver, they would not be restored to ordinary levels of health. They have other maladies that make their disease so much worse than average.

“The cause of sickle cell anemia” is a phrase that approaches reality only in those with the mildest forms of the disease. If this one malady were reversed, their health would be much, much better, though never perfect. Perfect health does not exist.

An anecdote that says that vitamin C deficiency does not cause scurvy

High dose vitamin C is a therapy for scurvy precisely because vitamin C deficiency is NOT the cause of scurvy.

What? Huh?

Some background:

By definition, the cause of something is completely responsible for it. There can be only one cause of something.

By definition, the driver of something is predominately responsible for it. There can be only one driver of something and there must also be at least one contributor.

By definition, a contributor to some effect is partly responsible for it. There can never be one contributor if there is no driver and no cause.

Statistics and common sense tell us that in nature there are many more contributors than drivers, and many more drivers than causes.

If vitamin C deficiency is the cause of scurvy, then only vitamin C can cure scurvy.

If vitamin C deficiency is a contributor to scurvy or a correlate of scurvy, and not the cause, or even the driver of scurvy, then a therapeutic dose of vitamin C might cure scurvy.

If vitamin C deficiency is a correlate of scurvy, not a cause, then simply increasing bodily pools of vitamin C to above the level seen in scurvy will not cure scurvy.

On the contrary, it will take quite a bit higher doses to do that. This is what is observed and was in fact the second thing that made me suspicious of the one-hit causal model of scurvy. The anecdote below, while not reliable, would disprove conventional wisdom, if the anecdote could be verified and established by rigorous experimentation.

If scurvy is a multi-hit a-causal disease, as I believe is the rule for diseases, then any number of things might cure it, including large doses of a single agent, vitamin C – because even single agents are multifactorial in their actions.

Scurvy could also be an exceptional one-hit causal disease or it could be a case of medical gerrymandering, making the statement somewhat trivial, as being true by definition. Gerrymandering means that only those symptoms attributable to vitamin C deficiency are included within the scope of the disease known as scurvy. Yet those who suffer from scurvy have more things wrong with them than that definition allows, including more deficiencies than just one vitamin.

As scientific evidence goes, anecdotes are weak, really weak. But they are not NOTHING. They are not controlled experiments and those reporting the anecdotes may even lack credibility. The anecdotes need to be investigated and the work repeated, scientifically. Most scientists just ignore anecdotes and go on about their business, but they do so at their own peril, the peril of the scientific error of promulgating and perpetuating overly simplistic univariate models.

Many an underpowered model, one that is too causal, too univariate, has arisen by ignoring anecdotes.

Here is a widely ignored anecdote about scurvy that if it is true, blows the theory that vitamin C deficiency is the cause of scurvy right out of the water because scurvy was cured rapidly without vitamin C. The two keys, which dispute scientists claims to the contrary, are the rapidity of the effect and the heat stability of the factor(s) responsible.

Reference:

J Ethnobiol Ethnomed. 2009; 5: 5.  Published online 2009 Feb 2. doi:  10.1186/1746-4269-5-5 PMCID: PMC2647905.  Arginine, scurvy and Cartier’s “tree of life”

“One of the first documented uses of indigenous medicine in North America was the cure in the winter of 1536 of Jacques Cartier’s crew from a disease he called “Scorbut”(scurvy) [1,2]. Cartier’s second voyage (1535–1536) was undertaken at the command of King François 1er to complete the discovery of the western lands under the same climate and parallels as in France. At Stadaconna, now Quebec City, Cartier’s crew was cured from scurvy by ascorbic acid (vitamin C) obtained as a decoction from the Iroquois. It was prepared by boiling winter leaves and the bark from an evergreen tree. The tree, identified as “Annedda”, became known as the “tree of life” or “arbre de vie” because of its remarkable curative effects. In the winter, scurvy was the most prevalent disease among the Iroquois. This was due to the lack of food and vitamin C [3].

The cure for scurvy was significant for future naval explorations and for the introduction of the tree into France during the Reformation when the Age of Reason began (1558–1648) [4]. The medicinal value of the tree of life contributed to the resurrection of botany, which at that time struggled to free itself from pharmacy when medical men were still its masters. By the eighteenth century, the French naturalists at the Jardin du Roi in Paris knew of Thuja occidentalis as the tree of life and planted an avenue of it in the Jardin itself [5].

The Iroquois referred to the tree as Annedda (l’Annedda, Aneda, Anneda, Hanneda) [2]. Other tribal names for conifers were “ohnehta” for white pine, “onita” and “onnetta” for white spruce (Mohawk, Onandaga). These names represent the evergreen nature characteristic of coniferous trees. Regarding the transmission of the tree of life to France, the earlier one goes, the sparser are the available manuscripts. The pre-Linnaeus terminology for conifers made their precise identity impossible to make. Based on collections by French explorers and the ethnomedicine of indigenous peoples in eastern Canada, the true identity of the tree of life became controversial [2]. The identity of Anneda was narrowed down to eastern white cedar or arborvitae (Thuja occidentalis L.), white spruce (Picea glauca (Moench) Voss), black spruce (Picea mariana (Mill.)), eastern white pine (Pinus strobus L.), red pine (Pinus resinosa Aiton), balsam fir (Abies balsamea (L.) Mill.), eastern hemlock (Tsuga canadensis (L.)), and juniper (Juniperus communis L.) [2,6].

We now know that during late a severe winter and at a similar latitude to Quebec City, the candidate trees of life are a rich nutritional source of arginine, proline and other amino acids [79]. Their physiological fluids and proteins contain amino acids which are essential in the human diet because the body does not synthesize them (viz., phenylalanine, valine, threonine, tryptophan, isoleucine, methionine, leucine, and lysine). Arginine, cysteine, glycine, glutamine, histidine, proline, serine and tyrosine are conditionally essential, meaning they are not normally required in the diet, but must be supplied to specific populations that do not synthesize these amino acids in adequate amounts [10]. Today, these amino acids are used as nutritional support for the recovery of critically ill patients [1114]. In the recovery from scurvy they would help to promote vitamin C-dependent collagen biosynthesis, promote wound healing, reduce susceptibility to sepsis, and contribute to weight gain [10,1517].”

He declares, I believe wrongly, in view of the trivial amount of vitamin C present in heat-treated extracts of Thuja occidentalis bark and needles, the rapidity of the cure, and the heat-stability of the curative agent(s):

“Several conifers have been considered as candidates for “Annedda”, which was the source for a miraculous cure for scurvy in Jacques Cartier’s critically ill crew in 1536. Vitamin C was responsible for the cure of scurvy [emphasis mine] and was obtained as an Iroquois decoction from the bark and leaves from this “tree of life”, now commonly referred to as arborvitae. Based on seasonal and diurnal amino acid analyses of candidate “trees of life”, high levels of arginine, proline, and guanidino compounds were also probably present in decoctions prepared in the severe winter.”

In spite of declaring vitamin C deficiency to be the cause of cancer, this author concludes more sensibly, more multifactorially:

“The history of medicine and clinical practice has involved a succession of blind alleys and detours, mountains of often uninterpretable observations, and a great leap forward as in the discovery of vitamin C as a cure for scurvy. This review takes us centuries back, and turns our attention to the combined values of arginine, NO, proline, other conditionally and essential amino acids, guanidino compounds, and antioxidants as added factors in the food and medicines of indigenous Canadian peoples.”

Fit only for treasons

A man without music (or more generally arts and humanities) in his soul – according to the Bard.

Who was the driver behind the American Revolution? Driver = the person predominately responsible for – John Adams, a man who admitted he had no music in his soul.

Coincidence? I doubt it. The Bard was right again.

Want to be a rebel – eschew music, art, humanities. Eschew music and you are more likely to be a rebel at heart if not in deed.

It’s not them – it is us

The multi-hit a-causal model of disease says that the problem, the enemy, is us, more specifically, our weaknesses.

Koch’s postulates have the wrong emphasis – it is them, not us. They cause disease and we suffer the consequences.

Our defenses, both specific and non-specific, should be the focus of research.

Pathogens are challenges, and little more, but they evolve. What works today against these pathogens will probably not be adequate in time.

A contributor to poorer quality sleep?

Eating too often. Not too much (which is also a problem, and may be as relevant to sleep quality, especially in the extremely obese via sleep apnea).

Eating too often. The point is that one can eat the right amount of food, but eating too often will still lead to unexpected problems.

Many Americans eat 3 meals a day and some eat 3 meals plus snacks.

This is too often – it does not allow time for important repair processes, particularly those dependent on autophagy, which is stimulated by glucagon, and inhibited by insulin (and hence by every episode of feeding).

My guess is 1-2 meals per day is optimal for overall health and for optimal repair processing.

There are other problems that arise from eating too often. For example, because those who eat 3 meals plus snacks suffer the inevitable post-prandial slump, they consume more caffeinated beverages than they would if they ate just once per day, and this has the effect of reducing overall quantity and quality of sleep.

The Fast-5 diet format recommended by Dr. Bert Herring suggests having one meal a day of about 5 hour duration just before bedtime, followed by a 19 hour fast. As long as there is no reflux, this seems to me to be the best time for the single meal (and I am trying it out now). Because no caffeinated beverages need be consumed to combat the slump just before retiring, less caffeine is needed during the productive waking hours (I’m trying 100 mg every few hours in the AM – 400 mg MAX), meaning that all other things being equal, sleep will tend to be of better quality and longer in duration.

I wonder if there are data to support this. Probably very little, since the Fast-5 is not a particularly popular diet format – and who would study such a topic? I would – if only I could.

Logic and Logik

Goethe’s logic of passion – which Hegel called Logik and which Russell so famously misunderstood in his History of Western Philosophy– is simply to adopt a position wholeheartedly until you see its limitations by painful experience.

To help visualize this: imagine you were living in France during the Revolution – adopting the monarchist position or the revolutionary ideals at the wrong time could have led to imprisonment and death.

This procedure leads to sounder outcomes after adopting both sides of controversial viewpoints and finding both of their limitations – that is, dialectical syntheses (Hegel’s triad – roughly = thesis – antithesis – synthesis).

However, it is unnecessary. We can know a priori that any one-sided position is inadequate at modeling the zero sum multiverse that we live in.

In the case of the American and French Revolutionary ideals: we are more or less equal – equal with an asterisk, and our equality is so much more than is comprehended in the term “isonomia”.

Both Logik and the pain are unnecessary – under the assumption of a zero sum multi-verse,  logic dictates that one-sided positions will inevitably fail to model our world.

Application to: metaphysics

The logical positivists like Bertrand Russell were almost completely correct: metaphysical thinking is not sound. They were passionate about this dictum, though to most of us, “who cares?” is the usual response to such an academic issue.

As a rule, the positivists were right; but here is a worthy meta-rule (a logical entity different from a rule, according to Rusell’s Theory of Types) that may or may not also have an exception: to every rule there is an exception.

The exception to the positivists’ rule: any metaphysics that models the data of science -physics, chemistry, and biology as of 2017- is worth looking at. Take a look at my metaphysics in Crazy or Just Crazy Enough to be True. I figured this out in High School in 1971-1972 with only a High Schooler’s knowledge of science (barely an outline of science as it is today).